International Strategic Spillovers of Monetary Policy

Juan Antonio Montecino Columbia University

October 23, 2018

Introduction: Strategic Spillovers

Research Question

Does monetary policy create multilateral externalities? If so, how do countries *react* to these spillovers?

This Paper

- Study international transmission of monetary policy through global financial networks
- Spatial/network model of strategic interdependence
- Examine role of capital account & exchange rate policies

Results

- Empirical evidence of strong strategic complementarities
- Implies amplification in equilibrium
- Evidence that capital controls increase policy autonomy

Introduction: Strategic Spillovers

Research Question

Does monetary policy create multilateral externalities? If so, how do countries *react* to these spillovers?

This Paper

- Study international transmission of monetary policy through global financial networks
- Spatial/network model of strategic interdependence
- Examine role of capital account & exchange rate policies

Results

- Empirical evidence of strong strategic complementarities
- Implies amplification in equilibrium
- Evidence that capital controls increase policy autonomy

Introduction: Strategic Spillovers

Research Question

Does monetary policy create multilateral externalities? If so, how do countries *react* to these spillovers?

This Paper

- Study international transmission of monetary policy through global financial networks
- Spatial/network model of strategic interdependence
- Examine role of capital account & exchange rate policies

Results

- Empirical evidence of strong strategic complementarities
- Implies amplification in equilibrium
- Evidence that capital controls increase policy autonomy

Debate on international spillovers

- Concern with externalities from *self-oriented* macro policy
- e.g. Currency Wars debate
- ► Huge literature on macro effects of US m-policy:
 - Output spillovers (e.g. Georgiadis, 2016)
 - Capital flows (e.g. Bruno and Shin, 2015)
 - Exchange rate (e.g. Chen et al, 2016)
 - Exports (e.g. Lin and Ye, 2017)

"Impossible Trinity" debate

- Capital mobility, fixed XR, monetary autonomy \rightarrow choose two!
- Evidence on Mundellian Trilemma
 - Shambaugh (2004), Obstfeld et al (2005), Aizenman et al (2013), Klein and Shambaugh (2015)

Debate on international spillovers

- Concern with externalities from *self-oriented* macro policy
- e.g. Currency Wars debate
- ► Huge literature on macro effects of US m-policy:
 - Output spillovers (e.g. Georgiadis, 2016)
 - Capital flows (e.g. Bruno and Shin, 2015)
 - Exchange rate (e.g. Chen et al, 2016)
 - Exports (e.g. Lin and Ye, 2017)

"Impossible Trinity" debate

- Capital mobility, fixed XR, monetary autonomy \rightarrow choose two!
- Evidence on Mundellian Trilemma
 - Shambaugh (2004), Obstfeld et al (2005), Aizenman et al (2013), Klein and Shambaugh (2015)

Strategic interactions?

- Little attention on how domestic policy reacts to neighbors' policy
- Endogenous reactions may amplify initial spillover
- Theoretical literature: international policy coordination
 - ► First-wave: Niehans (1968), Hamada (1979)
 - ► Contemporary: Korinek (2016), Blanchard (2016)

My contribution

- First paper to study contemporaneous strategic reactions
- Evidence that higher-order network effects matter
- Combination implies strong amplification in equilibrium

Strategic interactions?

- Little attention on how domestic policy reacts to neighbors' policy
- Endogenous reactions may amplify initial spillover
- Theoretical literature: international policy coordination
 - ► First-wave: Niehans (1968), Hamada (1979)
 - Contemporary: Korinek (2016), Blanchard (2016)

My contribution

- First paper to study contemporaneous strategic reactions
- Evidence that higher-order network effects matter
- Combination implies strong amplification in equilibrium

Taxonomy of previous studies

- Periphery countries linked to base (e.g. through peg)
- Base country is exogenous

- Each bilateral spillover estimated individually
- Typically, bilateral VARs

This paper

- General structure of linkages between countries
- M-policy is endogenous in every country
- Possibility of third-country / higher-order effects

Conceptual Framework

Consider a central bank in country i with the following loss function:

$$\min_{r_i} \mathcal{L}_i = \frac{1}{2} \sum_{k=1}^{K} \alpha_{ik} \left(Y_{ik} - \bar{Y}_{ik} \right)^2$$

subject to

$$Y_{ik} = Y_{ik}(\boldsymbol{r}, \boldsymbol{X})$$
 for $k = 1, 2, \dots, K$

- Policy rate: $r = \{r_1, r_2, ..., r_N\}$
- Macro variable: Y_{ik} (e.g. employment)
- Exogenous observable: X
- Macro spillover: $\partial Y_{ik}/\partial r_{\ell} \neq 0$

Conceptual Framework

First order condition for r_i :

$$\sum_{k=1}^{K} \alpha_{ik} \left(Y_{ik} - \bar{Y}_{ik} \right) \frac{\partial Y_{ik}}{\partial r_i} = 0$$

Implies Nash / Cournot equilibrium:

$$r_i^* = f_i(\{r_j^*\}_{j \neq i}, X)$$
 for all $i = \{1, 2, \dots, N\}$

Note:

- Domestic policy rate depends on foreign rates and *domestic* X
- Strategic spillover: $\partial r_i / \partial r_\ell \neq 0$

Econometric Model

Consider the following *N*-country Network Model:

$$r_{it} = \delta \sum_{j=1}^{N} w_{ij}r_{jt} + \beta \mathbf{X}_{it} + u_{it}$$

• Spatial lag:
$$\bar{r}_{it} = \sum_{j=1}^{N} w_{ij} r_j$$

- Weighting Matrix: W
- Predetermined macro variables X
- ▶ Clearly, foreign rates $r_{j\neq i}$ are endogenous (i.e. $\mathbb{E}{\{Wru\}} \neq 0$)
- OLS estimate of δ will be inconsistent

Identification Strategy

Reduced form solution:

$$\mathbf{r}_t = (\mathbf{I} - \delta \mathbf{W})^{-1} \boldsymbol{\beta} \mathbf{X}_t + (\mathbf{I} - \delta \mathbf{W})^{-1} \mathbf{u}_t$$

Neighbors' monetary policy:

$$E\{\boldsymbol{W}\boldsymbol{r}_t|\boldsymbol{X}_t\} = \boldsymbol{W}\boldsymbol{\beta}\boldsymbol{X}_t + \delta\boldsymbol{W}^2\boldsymbol{\beta}\boldsymbol{X}_t + \delta^2\boldsymbol{W}^3\boldsymbol{\beta}\boldsymbol{X}_t + \dots$$

• where
$$(I - \delta W)^{-1} = \sum_{k=0}^{\infty} \delta^k W^k$$

• Assuming
$$E(\boldsymbol{u}|\boldsymbol{X}) = 0$$
 holds

- WX, W^2X , W^3X ... are valid instruments
- Intuition: use neighbors' characteristics to instrument foreign monetary policy

Data and Estimation Details

Data

- Sample of 33 advanced and EMEs
- Quarterly frequency, 1999Q1 to 2016Q4
- Mix of narrative policy interest rates and shadow rates •
- Large set of macro variables
- Forecast data to deal with expectational effects
- Stationarity properties

Estimation

- Mostly Two-step GMM
- Control functions for non-linear effects
- ► Inference: Driscoll and Kraay (1998) standard errors
- Robust to heteroskedasticity, temporal and cross-sectional correlation

Weighting Matrices (W)

First-Stage

Growth forecast errors: FEG

Instrument Wr using spatial lags of FEG

Strategic spillovers: $\hat{\delta}$

Weighting Matrix (W): Bilateral bank positions								
				dre	opping outli	ers		
	(1)	(2)	(3)	(4)	(5)	(6)		
First-Stage Results								
$\boldsymbol{W}\cdot FEG$	0.122^{***}			0.119^{***}				
	(0.040)			(0.029)				
$W^2 \cdot FEG$		0.215^{***}			0.230^{***}			
		(0.065)			(0.054)			
$W^3 \cdot FEG$			0.276^{***}			0.281^{***}		
			(0.078)			(0.063)		
Second-Stage Results								
Wr	0.708***	0.823^{**}	0.782^{***}	0.814^{***}	0.778^{***}	0.836^{***}		
	(0.214)	(0.338)	(0.242)	(0.240)	(0.300)	(0.265)		
Observations	1008	1008	1008	928	932	937		
Kleibergen-Paap F-stat	9.135	10.833	12.384	16.492	17.801	19.356		
And erson-Rubin test (χ^2)	3.945	4.835	5.018	5.393	4.295	4.762		
p-value	0.047	0.028	0.025	0.020	0.038	0.029		

- ► X: lagged growth & inflation forecast errors, RER appreciation
- Global Financial Crisis dummy
- 2S-GMM, Driscoll-Kraay standard errors

Comparison of Spillover Specifications

Average spillover across alternative models

	United	States	United I	United Kingdom		zone	Japan	
	dr_i/dr_B	SE	dr_i/dr_B	SE	dr_i/dr_B	SE	dr_i/dr_B	SE
(1) Base-country	0.175***	(0.056)	0.223**	(0.098)	0.155***	(0.050)	0.142^{**}	(0.060)
Network model								
(2) <i>OLS</i>	0.117^{**}	(0.057)	0.099^{*}	(0.055)	0.107^{*}	(0.057)	0.019^{*}	(0.012)
(3) 2S-GMM	0.325^{***}	(0.096)	0.335^{***}	(0.121)	0.337^{***}	(0.113)	0.072^{**}	(0.028)
Higher-order effects								
(4) Avg. multiplier	1.384^{***}	(0.106)	1.977^{***}	(0.284)	1.767^{***}	(0.204)	2.442^{***}	(0.413)
(5) Share of total	0.277^{***}	(0.055)	0.494^{***}	(0.073)	0.434^{***}	(0.065)	0.591^{***}	(0.069)

Naive "base-country" specification:

$$r_{it} = \gamma_B r_{Bt} + \beta \mathbf{X}_{it} + u_{it}$$

• Spillover estimates $\hat{\gamma}_B$ are biased!

Consider the network model:

$$\mathbf{r} = \delta \mathbf{W} \mathbf{r} + \beta \mathbf{X} + \mathbf{u}$$

- Let $oldsymbol{B} = (oldsymbol{I} \hat{\delta}oldsymbol{W})^{-1}$
- Let \mathbf{A}_{ℓ} denote the ℓ -th column of a matrix \mathbf{A}
- Suppose there's a shock du_ℓ to country ℓ 's policy rate...

```
Direct / PE effects: Indirect / GE effects:

dr_{PE} = \hat{\delta} W_{\ell} du_{\ell}
dr_{GE} = B_{\ell} du_{\ell}
```

Consider the network model:

$$\mathbf{r} = \delta \mathbf{W} \mathbf{r} + \beta \mathbf{X} + \mathbf{u}$$

- Let ${\pmb B} = ({\pmb I} \hat{\delta} {\pmb W})^{-1}$
- Let \mathbf{A}_{ℓ} denote the ℓ -th column of a matrix \mathbf{A}
- Suppose there's a shock du_{ℓ} to country ℓ 's policy rate...

Direct / PE effects: Indirect / GE effects: $dr_{PE} = \hat{\delta} W_{\ell} du_{\ell}$ $dr_{GE} = B_{\ell} du_{\ell}$

Consider the network model:

$$\mathbf{r} = \delta \mathbf{W} \mathbf{r} + \beta \mathbf{X} + \mathbf{u}$$

- Let $oldsymbol{B} = (oldsymbol{I} \hat{\delta}oldsymbol{W})^{-1}$
- Let \mathbf{A}_{ℓ} denote the ℓ -th column of a matrix \mathbf{A}
- Suppose there's a shock du_{ℓ} to country ℓ 's policy rate...

Direct / PE effects: Indirect / GE effects:

$$dr_{PE} = \hat{\delta} W_{\ell} du_{\ell}$$
 $dr_{GE} = B_{\ell} du_{\ell}$

$$r_{it} = (\delta_0 + \boldsymbol{ heta} \boldsymbol{K}_{it}) \cdot \bar{r}_{it} + eta \boldsymbol{X}_{it} + u_{it}$$

- Heterogeneity / non-linearities captured by interactions
- heta measures reaction difference relative to base level δ_0
- ► K: Capital controls & reserve accumulation
- Intuition: Can interventions provide insulation?

Weighting Matrix (W) : Gross bilateral bank positions									
	(1)	(2)	(3)	(4)	(5)	(6)			
Wr	0.817^{***}	0.867^{***}	0.876^{***}	0.835^{***}	0.878^{***}	0.890**			
	(0.170)	(0.174)	(0.150)	(0.164)	(0.172)	(0.150)			
$Wr \cdot K_{CI}$	-0.589^{**}			-0.622^{**}					
	(0.285)			(0.277)					
$Wr \cdot K_{SCH}$		-0.721^{**}			-0.733***				
		(0.298)			(0.269)				
$Wr \cdot K_{IN}$			-0.952^{***}			-0.973^{*}			
			(0.321)			(0.331)			
$Wr \cdot RES$				-0.032	-0.025	-0.027			
				(0.032)	(0.021)	(0.020)			
Closed capit	al account	t spillover							
$\hat{\delta}_0 + \hat{\theta}_1$	0.229	0.145	-0.076	0.213	0.145	-0.084			
	(0.240)	(0.228)	(0.293)	(0.238)	(0.200)	(0.291)			
Observations	952	884	884	952	884	884			

Takeaways...

- Spillover effect is lower in countries with capital controls
- Interpretation: Insulation against foreign shocks
- \Rightarrow Increase in policy autonomy

Other heterogeneity?

- Financial integration: increase spillovers
- Inflation targeting: no effect
- Business cycle: *mixed*

Takeaways...

- Spillover effect is lower in countries with capital controls
- Interpretation: Insulation against foreign shocks
- \blacktriangleright \Rightarrow Increase in policy autonomy

Other heterogeneity?

- Financial integration: increase spillovers
- Inflation targeting: no effect
- Business cycle: mixed

Dynamics

How do countries react over time?

- Estimate impulse response using local projection (Jordà, 2005)
- IV methods to identify endogenous effects
- Consider the following local projection:

$$\mathbf{r}_{t+h} = \delta_h \mathbf{W} \mathbf{r}_t + \beta_h \mathbf{X}_t + \mathbf{u}_t$$

- Estimate for each *horizon* $h = \{1, 2, \dots, H\}$
- Coefficient $\hat{\delta}_h$ measures the impulse response after h quarters

Dynamics

Impulse response function

Cumulative response

Dynamics: Capital Controls

Closed capital account

Robustness Exercises

1 Alternative specifications/estimators

- Network structures (W)
- Overidentified models
- CUE estimator
- 2 High-Dimensional / LASSO Methods
 - Data driven selection of 1st stage instruments
 - High-dimensional controls
- 8 Placebo Networks
 - Assess role of W misspecification by randomizing network
 - Probability that result is driven by misspecification is low

Robustness Exercises

1 Alternative specifications/estimators

- Network structures (W)
- Overidentified models
- CUE estimator

2 High-Dimensional / LASSO Methods

- Data driven selection of 1st stage instruments
- High-dimensional controls

B Placebo Networks

- Assess role of W misspecification by randomizing network
- Probability that result is driven by misspecification is low

Robustness Exercises

1 Alternative specifications/estimators

- Network structures (W)
- Overidentified models
- CUE estimator

2 High-Dimensional / LASSO Methods

- Data driven selection of 1st stage instruments
- High-dimensional controls

🛐 Placebo Networks 💽

- Assess role of \boldsymbol{W} misspecification by randomizing network
- Probability that result is driven by misspecification is low

Thank You :)

High-Dimensional Instruments

$$E\{\boldsymbol{W}\boldsymbol{r}_t|\boldsymbol{X}_t\} = \boldsymbol{W}\boldsymbol{\beta}\boldsymbol{X}_t + \delta\boldsymbol{W}^2\boldsymbol{\beta}\boldsymbol{X}_t + \delta^2\boldsymbol{W}^3\boldsymbol{\beta}\boldsymbol{X}_t + \dots$$

- In principle, there are an infinite number of valid instruments
- Rule of thumb: use WX, W^2X , and W^3X
- Alternative: LASSO shrinkage estimator
- Chernozukhov, Hansen, Splinder (2015) model for high-dimensional IVs
- Post-LASSO 2SLS / GMM: use selected instruments in standard estimator

High-Dimensional Instruments

CHS / Post-LASSO GMM Estimates of $\hat{\delta}$

Penalty Loading Cluster:	Y	'ear	Country		
Estimator:	LASSO	S-LASSO	LASSO	S-LASSO	
	(1)	(2)	(3)	(4)	
(a) Weighting Matrix (W): Gross b	ilateral banl	k positions			
Orthogonalized 2SLS	0.571^{*}	0.437	0.765***	0.663**	
	(0.310)	(0.267)	(0.258)	(0.286)	
Post-LASSO GMM	0.667^{**}	0.475^{**}	0.557^{***}	0.530^{***}	
	(0.331)	(0.207)	(0.119)	(0.140)	
Anderson-Rubin Weak Inst. Test (χ^2)	2.863	3.007	7.967	7.037	
AR (p-value)	0.091	0.083	0.019	0.030	
(b) Weighting Matrix (W): Gross b	ilateral trad	le			
Orthogonalized 2SLS	0.983**	0.790**	1.087***	1.069***	
	(0.390)	(0.372)	(0.339)	(0.361)	
Post-LASSO GMM	1.058^{***}	0.767^{***}	0.588^{***}	0.724^{***}	
	(0.328)	(0.195)	(0.174)	(0.181)	
Anderson-Rubin Weak Inst. Test (χ^2)	5.902	6.745	8.093	10.365	
AR (p-value)	0.015	0.009	0.017	0.006	

Placebo Network Tests

- How likely would it be to obtain $\hat{\delta}$ from a *random* network?
- ► **W** misspecification problem
 - Measurement error?
 - Incorrect network?
- Direction of bias is not obvious

Randomized Placebo Networks:

- 1 Reshuffle weight matrix $oldsymbol{W}$ to obtain $oldsymbol{\widetilde{W}}$
- 2 Construct placebo spatial lag of the policy rate $\tilde{r} = Wr$
- 3 Estimate $\mathbf{r} = \delta \tilde{\mathbf{r}} + \beta \mathbf{X} + \mathbf{u}$ to obtain placebo spillover $\tilde{\delta}$
- 4 Repeat P times

Placebo Network Tests

Data: Summary statistics and variable definitions

Variable Description	Mean	Sd	Min	Min
Policy rate (first-difference)	-0.002	0.012	-0.220	0.130
Real GDP Growth (Y-o-Y)	0.031	0.032	-0.155	0.187
Inflation rate	0.038	0.056	-0.025	0.774
Real exchange rate appreciation	0.001	0.083	-0.599	0.291
Stock Market Index	2.213	0.863	0.141	4.937
VIX Global volatility index	0.846	7.924	-10.278	38.010
Price of oil (log US\$)	3.955	0.619	2.407	4.811
Price of agricultural raw materials (log US\$)	4.708	0.162	4.437	5.104
Year-ahead growth forecast	0.028	0.025	-0.106	0.115
Year-ahead inflation forecast	0.040	0.069	-0.092	1.037
Inverse Chinn-Ito liberalization index	0.325	0.328	0.000	1.000
Schindler index of capital controls	0.382	0.333	0.000	1.000
Schindler index of inflows controls	0.356	0.315	0.000	1.000
Change in reserves (% of GPD)	0.694	3.523	-29.777	40.811
Observations		2	233	

back

Data: policy rates vs. shadow rates

- Narrative policy rates (BIS)
- Shadow rates (Krippner, 2012)
- Use *shadow rates* if policy rate \approx zero

Data: Unit Root?

(b) Panel unit root tests

	Statistic	p-value
$Homogenous\ tests$		
Levin-Lin-Chu (adj t)	-1.486	(0.069)
Harris-Tzavalis (Z)	-1.388	(0.083)
Breitung (λ)	0.082	(0.533)
$Heterogeneous\ tests$		
Im-Pesaran-Shin (\bar{W}_t)	-0.956	(0.169)
Fisher (Z)	-0.998	(0.159)
Pesaran CADF (\bar{z}_t)	-2.239	(0.013)
Stationarity test		
Hadri LM (z)	22.368	(0.000)

back

Peak reactions

Strategic spillovers: alternative specifications

(a) Weighting Matrix (W): Gross bilateral bank positions								
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	0.882^{***}	0.767^{***}	0.782^{***}	0.781^{***}	0.666^{***}	0.733***		
	(0.236)	(0.195)	(0.242)	(0.244)	(0.143)	(0.201)		
Observations	1008	966	1008	1008	1008	948		
Kleibergen-Paap F-stat	6.801	7.783	12.384	12.493	10.669	15.369		
And erson-Rubin test (χ^2)	2.473	3.783	5.018	4.769	3.363	4.914		
p-value	0.116	0.052	0.025	0.029	0.067	0.027		
(b) Weighting Matrix (W) :	Gross bila	teral invest	ment posit	ion				
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	0.896^{***}	0.834^{***}	0.694^{***}	0.690^{***}	0.725^{***}	0.685^{***}		
	(0.173)	(0.159)	(0.231)	(0.241)	(0.141)	(0.218)		
Observations	1715	1647	1715	1715	1715	1537		
Kleibergen-Paap F-stat	6.286	8.236	11.996	11.688	13.242	16.193		
Anderson-Rubin test (χ^2)	3.786	5.056	4.433	3.947	3.488	3.983		
p-value	0.052	0.025	0.035	0.047	0.062	0.046		
Common factors?	No	Yes	No	No	No	No		
Common GFC effects?	No	No	Yes	No	No	No		
Country-specific GFC effects?	No	No	No	Yes	No	No		
Time FE?	No	No	No	No	Yes	Yes		
Additional covariates?	No	No	No	No	No	Yes		
Drop outliers?	No	No	No	No	No	Yes		

Overidentified models

(a) Weighting Matrix (W): Gross bilateral bank positions								
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	0.804^{***}	0.731^{***}	0.731^{***}	0.693^{***}	0.637^{***}	0.638^{***}		
	(0.133)	(0.141)	(0.194)	(0.191)	(0.117)	(0.162)		
Observations	1008	966	1008	1008	1008	950		
Kleibergen-Paap F-stat	2.400	1.978	3.408	3.378	5.114	6.937		
Overidentification test	0.182	0.673	0.129	0.347	0.240	0.517		
Anderson-Rubin test (χ^2)	3.476	4.609	5.633	5.518	3.971	5.189		
p-value	0.482	0.330	0.228	0.238	0.410	0.268		
(b) Weighting Matrix (W):	Gross bila	teral invest	ment					
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	0.838***	0.814^{***}	0.720***	0.628^{***}	0.672^{***}	0.632***		
	(0.117)	(0.114)	(0.216)	(0.182)	(0.123)	(0.174)		
Observations	1715	1647	1715	1715	1715	1540		
Kleibergen-Paap F-stat	2.962	2.631	3.894	4.269	4.227	5.144		
Overidentification test	1.631	1.451	1.704	2.125	2.361	1.296		
Anderson-Rubin test (χ^2)	5.420	7.970	6.105	5.049	5.848	5.561		
p-value	0.247	0.093	0.191	0.282	0.211	0.234		
Common factors?	No	Yes	No	No	No	No		
Common GFC effects?	No	No	Yes	No	No	No		
Country-specific GFC effects?	No	No	No	Yes	No	No		
Time FE?	No	No	No	No	Yes	Yes		
Additional covariates?	No	No	No	No	No	Yes		
Drop outliers?	No	No	No	No	No	Yes		

CUE Estimation

(a) Weighting Matrix (W): Gross bilateral bank positions								
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	0.882^{***}	0.767^{***}	0.782^{***}	0.781^{***}	0.666^{***}	0.733^{***}		
	(0.236)	(0.195)	(0.242)	(0.244)	(0.143)	(0.201)		
Observations	1008	966	1008	1008	1008	948		
Kleibergen-Paap F-stat	6.801	7.783	12.384	12.493	10.669	15.369		
Anderson-Rubin test (χ^2)	2.473	3.783	5.018	4.769	3.363	4.914		
p-value	0.116	0.052	0.025	0.029	0.067	0.027		
Common factors?	No	Yes	No	No	No	No		
Common GFC effects?	No	No	Yes	No	No	No		
Country-specific GFC effects?	No	No	No	Yes	No	No		
Time FE?	No	No	No	No	Yes	Yes		
Additional covariates?	No	No	No	No	No	Yes		
Drop outliers?	No	No	No	No	No	Yes		

→ back

Alternative network structures \boldsymbol{W}

(a) Weighting Matrix (W): Gross bilateral trade								
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	1.078^{***}	0.980^{***}	1.046^{***}	1.034^{***}	0.881^{***}	0.898^{***}		
	(0.201)	(0.186)	(0.270)	(0.264)	(0.136)	(0.207)		
Observations	1757	1693	1757	1757	1757	1589		
Kleibergen-Paap F-stat	9.747	10.790	15.259	15.732	9.853	11.360		
Anderson-Rubin test (χ^2)	3.819	5.810	8.585	8.214	4.279	4.342		
p-value	0.051	0.016	0.003	0.004	0.039	0.037		
(b) Weighting Matrix (W)	Relative of	output size						
	(1)	(2)	(3)	(4)	(5)	(6)		
Wr	1.144^{***}	1.070^{***}	1.116^{***}	1.092***	0.893^{***}	0.664^{***}		
	(0.216)	(0.202)	(0.357)	(0.351)	(0.161)	(0.237)		
Observations	1757	1693	1757	1757	1757	1568		
Kleibergen-Paap F-stat	6.647	8.919	7.497	7.324	8.393	5.730		
And erson-Rubin test (χ^2)	3.691	5.069	5.489	4.973	3.912	3.765		
p-value	0.055	0.024	0.019	0.026	0.048	0.052		
Common factors?	No	Yes	No	No	No	No		
Common GFC effects?	No	No	Yes	No	No	No		
Country-specific GFC effects?	No	No	No	Yes	No	No		
Time FE?	No	No	No	No	Yes	Yes		
Additional covariates?	No	No	No	No	No	Yes		
Drop outliers?	No	No	No	No	No	Yes		

Heterogeneous local projections

Horizon	W	r	$\boldsymbol{W} \boldsymbol{r} \cdot \boldsymbol{h}$	SCH .	K_{i}	SCH
	$\hat{\delta}_{0,h}$	SE	$\hat{\theta}_{1,h}$	SE	η_h	SE
h = 0	0.760***	(0.124)	-0.576**	(0.228)	-0.001	(0.001)
h = 1	1.667^{***}	(0.332)	-0.920***	(0.319)	-0.001	(0.001)
h = 2	1.757^{***}	(0.463)	-1.011**	(0.431)	-0.001	(0.002)
h = 3	1.645^{***}	(0.427)	-1.004***	(0.370)	-0.001	(0.002)
h = 4	1.335^{***}	(0.475)	-1.197^{***}	(0.427)	-0.001	(0.003)
h = 5	0.840^{*}	(0.495)	-1.167**	(0.481)	-0.001	(0.003)
h = 6	0.393	(0.509)	-1.088	(0.707)	-0.001	(0.003)
h = 7	0.107	(0.617)	-1.018	(0.803)	-0.002	(0.003)
h = 8	0.067	(0.655)	-0.799	(0.845)	-0.002	(0.003)

 $\boldsymbol{R_{h}} - \boldsymbol{R_{t-1}} = (\delta_{h} + \theta_{h}K_{t}) \cdot \boldsymbol{Wr}_{t} + \eta_{h}K_{t} + \boldsymbol{\beta}_{h}\boldsymbol{X}_{t} + \boldsymbol{u}_{t}$

back

