Technological Innovation as Regulatory Arbitrage

Anton Korinek UVA Juan A. Montecino American University Joseph E. Stiglitz Columbia

Motivation

Technological innovation tends to expand PPF

 arguably most important driver of material prosperity

 BUT, not all innovations improve social welfare
 This paper: innovations may undermine public goods

 hence, "tech innovation as reg. arbitrage"

Some Considerations...

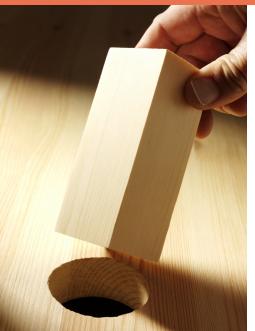
- productive activities generate private & public goods
- regulation often requires firms to supply public goods
- incentive to adopt technologies that are harder to regulate

Motivation

Some Considerations...

- productive activities generate private & public goods
- regulation often requires firms to supply public goods
- incentive to adopt technologies that are harder to regulate

Regulatory Arbitrage?



Regulatory arbitrage arises from "the difficulty of jamming square-pegged technologies into round-shaped regulation." (Todisco, 2015)

Figure:

Technical representation of the regulatory process.

Regulatory Arbitrage?

Wedge between de jure and de facto regulation...

Gig platforms

e.g. Uber, Handy

- worker misclassification, safety, traffic
- Rental platforms

e.g. Airbnb

- property tax avoidance, "shadow hotels"
- Digital assets / Crypto
 - circumvent financial regulation
 - social value?
- Social media
 - undermines journalism
 - "truth" as a public good

Preview of Results

Tractable framework to study innovation & reg. arbitrage

- public goods are underprovided in equilibrium
- existence of socially unproductive innovation
- conditions for when innovation is desirable
- Characterize optimal regulation
 - with full instruments, regulation achieves first-best
 how to regulate technologies that don't exist yet?
 simple rule to correct for arbitrage

Dynamic growth model

- possibility of permanently low productivity growth
- ineffective regulation as an stable steady-state
- characterize constrained efficient regulation

Preview of Results

- Tractable framework to study innovation & reg. arbitrage
 - public goods are underprovided in equilibrium
 - existence of socially unproductive innovation
 - conditions for when innovation is desirable
- Characterize optimal regulation
 - with full instruments, regulation achieves first-best
 - how to regulate technologies that don't exist yet?
 - simple rule to correct for arbitrage

Dynamic growth model

- possibility of permanently low productivity growth
- ineffective regulation as an stable steady-state
- characterize constrained efficient regulation

Preview of Results

- Tractable framework to study innovation & reg. arbitrage
 - public goods are underprovided in equilibrium
 - existence of socially unproductive innovation
 - conditions for when innovation is desirable
- Characterize optimal regulation
 - with full instruments, regulation achieves first-best
 - how to regulate technologies that don't exist yet?
 - simple rule to correct for arbitrage
- Dynamic growth model
 - possibility of permanently low productivity growth
 - ineffective regulation as an stable steady-state
 - characterize constrained efficient regulation

Static Model Setup

h

 \blacktriangleright Representative agent with quasi-linear utility, $\gamma \in (0,1)$

 $u = \gamma \log y + z$

- Two consumption goods:
 private good (y)
 public good (z)
- One factor $\bar{\ell} = 1$, can be used in...
 - Private production: $y = \theta_v \ell_y$
 - Public production: $z = \ell_z$

• "Menu" of technologies
$$v \in V$$

Basic Setup

First-Best Allocation

$$\max_{v \in V, \ell_y, \ell_z} \gamma \log(\theta_v \ell_y) + \ell_z \qquad \text{s.t.} \quad \ell_y + \ell_z \leq 1$$

labor allocation:

$$\ell_y^* = \gamma \qquad \qquad \ell_z^* = 1 - \gamma$$

Competitive Equilibrium (Laissez-faire)

$$\max_{v \in V, \ell_y, \ell_z} p\theta_v \ell_y - \ell_y$$

labor allocation:

$$\ell_y^* = 1 \qquad \qquad \ell_z^* = 0$$

Competitive Equilibrium with Regulation

Regulation

Policymaker sets the share of labor employed in the production of public goods $\tau \in [0,1]$ – $\rm de~jure$ regulation

Technology Bundle

A technology $v \in V$ is described by a bundle $\mathcal{T}_v = (\theta_v, \delta_v)$ where:

- $heta_v \in \mathcal{R}^+$ denotes private good productivity
- $\delta_v \in [0,1]$ captures the effectiveness of regulation

Competitive Equilibrium with Regulation

Regulation

Policymaker sets the share of labor employed in the production of public goods $\tau \in [0,1]$ – ${\rm de\ jure}$ regulation

Technology Bundle

A technology $v \in V$ is described by a bundle $\mathcal{T}_v = (\theta_v, \delta_v)$ where:

$$heta_v \in \mathcal{R}^+$$
 denotes private good productivity

▶ $\delta_v \in [0,1]$ captures the effectiveness of regulation

Competitive Equilibrium with Fixed Regulation

Firm Problem:

$$\max_{v \in V, \ell} p\theta_v (1 - \delta_v \tau)\ell - \ell$$

 $\blacktriangleright~\delta_v \tau$ – de facto regulation of using technology $v \in V$

▶
$$\theta_v$$
 - productivity of technology $v \in V$

▶
$$\ell$$
 – total labor employed by firm

▶
$$y = \theta_v (1 - \delta_v \tau) \ell$$
 − private good output

Competitive PricePublic Good Supply
$$p = \frac{1}{\theta_v(1 - \delta_v \tau)}$$
 $z = \delta_v \tau \ell$

Competitive Equilibrium with Fixed Regulation

Firm Problem:

$$\max_{v \in V, \ell} p \theta_v (1 - \delta_v \tau) \ell - \ell$$

 $\blacktriangleright \ \delta_v \tau$ – de facto regulation of using technology $v \in V$

▶
$$\theta_v$$
 − productivity of technology $v \in V$

•
$$y = \theta_v (1 - \delta_v \tau) \ell$$
 – private good output

Competitive PricePublic Good Supply
$$p = \frac{1}{\theta_v(1 - \delta_v \tau)}$$
 $z = \delta_v \tau \ell$

Competitive Equilibrium with Fixed Regulation

Competitive Equilibrium

For a given regulation $\tau \in [0, 1]$, an equilibrium consists of:

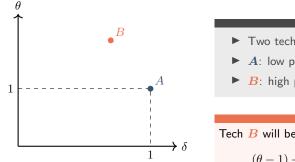
- Competitive price p
- ▶ Technology choice $v \in V$
- ▶ Labor allocation ℓ_y , ℓ_z
- Such that firms optimize
- Markets clear

Consumer Welfare:

$$W(\tau; \theta_v, \delta_v) = \gamma \log(\theta_v (1 - \delta_v \tau)) + \delta_v \tau$$

Example: 2 Technologies

Figure: Innovation in reg. effectiveness - productivity space (δ, θ)



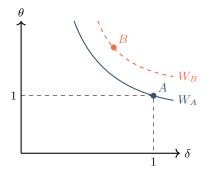
- Two technologies:
- ► A: low prod. / no arbitrage
- ▶ **B**: high prod. / + arbitrage

Tech B will be adopted if:

$$(\theta - 1) + (1 - \delta)\tau > 0$$

Example: 2 Technologies

Figure: Innovation in reg. effectiveness - productivity space (δ, θ)



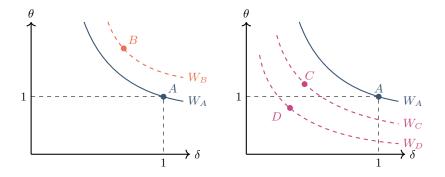
► A: low prod. / no arbitrage

Tech B will be adopted if:

$$(\theta - 1) + (1 - \delta)\tau > 0$$

Example: 2 Technologies

Figure: Innovation in reg. effectiveness - productivity space (δ, θ)



- ► Innovation increases welfare
- ► Innovation decreases welfare

(Constrained) Efficient Regulation

The regulator solves...

$$\max_{\tau \le 1} \gamma \log(\theta_v (1 - \delta_v \tau)) + \delta_v \tau$$

Proposition

For a given technology $v \in V$, the regulator's optimal regulation satisfies:

$$\hat{\tau}_v = \left\{ \frac{1-\gamma}{\delta_v} \,, \, 1 \right\}$$

There are 2 regimes:

• $\delta_v \ge 1 - \gamma \Rightarrow$ unconstrained, attains first-best

•
$$\delta_v < 1 - \gamma \Rightarrow$$
 legal max binds $\tau = 1$

(Constrained) Efficient Regulation

The regulator solves...

$$\max_{\tau \le 1} \gamma \log(\theta_v (1 - \delta_v \tau)) + \delta_v \tau$$

Proposition

For a given technology $v \in V$, the regulator's optimal regulation satisfies:

$$\hat{\tau}_v = \left\{ \frac{1-\gamma}{\delta_v} \,, \, 1 \right\}$$

There are 2 regimes:

 $\blacktriangleright \ \delta_v \geq 1-\gamma \Rightarrow \text{unconstrained, attains first-best}$

 $\blacktriangleright \ \delta_v < 1 - \gamma \Rightarrow \text{legal max binds } \tau = 1$

Desirability of Technical Change

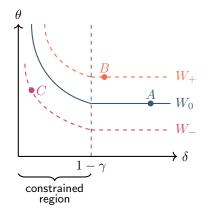
Unconstrained regulation

- Innovation always desirable
 - $\hat{ au}$ "undoes" arbitrage

Constrained regime

- legal maximum binds
- Innovation only desirable if

$$d\theta > \frac{\theta}{\gamma} \left(\frac{\gamma}{1-\delta} - 1 \right)$$



Desirability of Technical Change

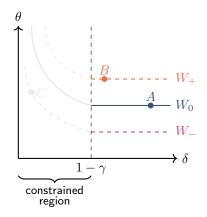
Unconstrained regulation

- Innovation always desirable
 - $\hat{ au}$ "undoes" arbitrage

Constrained regime

- legal maximum binds
- Innovation only desirable if

$$d\theta > \frac{\theta}{\gamma} \left(\frac{\gamma}{1-\delta} - 1 \right)$$



Desirability of Technical Change

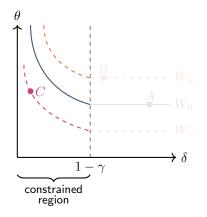
Unconstrained regulation

- Innovation always desirable
 - $\hat{ au}$ "undoes" arbitrage

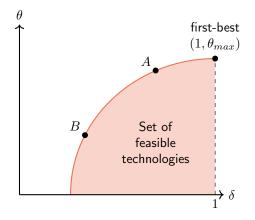
Constrained regime

- ► legal maximum binds
- Innovation only desirable if

$$d\theta > \frac{\theta}{\gamma} \left(\frac{\gamma}{1-\delta} - 1 \right)$$



Technology Choice



Technology Frontier

$$\theta^{\alpha} + \beta \delta^{-\alpha} \le F$$

Competitive Choice of Technology

Firm chooses $\mathcal{T} = (\theta, \delta)$ in order to minimize unit costs:

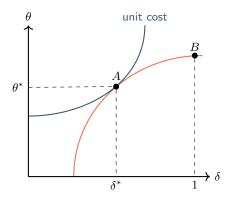
$$\min_{\theta,\delta} \ \frac{1}{\theta(1-\delta\tau)} \quad \text{s.t.} \quad \theta^{\alpha} + \beta \delta^{-\alpha} \le F$$

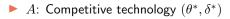
taking regulation $\tau \in [0,1]$ as given.

Solution:

$$\delta^*(\tau) = \left(\frac{\beta}{\tau F}\right)^{\frac{1}{1+\alpha}} \qquad \theta^*(\tau) = \left[F - \beta \delta^*(\tau)^{-\alpha}\right]^{\frac{1}{\alpha}}$$

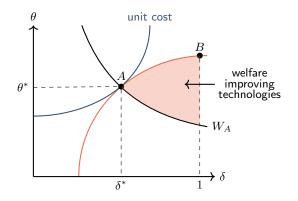
Competitive Equilibrium





► B: First-best $(\theta_{max}, 1)$

Competitive Equilibrium



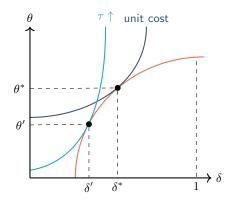
• $W_A = W(\theta^*, \delta^*)$: indifference curve for technology A

Competitive equilibrium is generically inefficient

Intuition:

- Private incentive to weaken regulation
- $\blacksquare \downarrow$ supply of public goods

Effects of Regulation



Proposition (Regulation-induced technical change)

An increase in regulation (i) decreases productivity and (ii) weakens the effectiveness of regulation.

$$\frac{d\theta^*}{d\tau} < 0 \qquad \qquad \frac{d\delta^*}{d\tau} < 0$$

Endogenize regulation:

Consider 3 alternative regulatory regimes...

- Naive Regulation
 - Timing: Simultaneous moveEquilibrium: Nash
- Sticky Regulation
 - Timing: Regulator sets τ first
 Equilibrium: Stackelberg
- Adaptive Regulation
 - Timing: Firm chooses technology (θ, δ) first

Endogenize regulation:

Consider 3 alternative regulatory regimes...

Naive Regulation

Timing: Simultaneous move

Equilibrium: Nash

Sticky Regulation

Timing: Regulator sets τ first
 Equilibrium: Stackelberg

Adaptive Regulation

Timing: Firm chooses technology (θ, δ) first

Equilibrium: Stackelberg

Endogenize regulation:

Consider 3 alternative regulatory regimes...

Naive Regulation

Timing: Simultaneous move

Equilibrium: Nash

Sticky Regulation

Timing: Regulator sets τ first
 Equilibrium: Stackelberg

Adaptive Regulation

 \blacksquare Timing: Firm chooses technology (θ,δ) first

Equilibrium: Stackelberg

Endogenize regulation:

Consider 3 alternative regulatory regimes...

- Naive Regulation
 - Timing: Simultaneous move
 - Equilibrium: Nash
- Sticky Regulation
 - Timing: Regulator sets τ first
 - Equilibrium: Stackelberg
- Adaptive Regulation
 - \blacksquare Timing: Firm chooses technology (θ,δ) first
 - Equilibrium: Stackelberg

Regulatory Games: Naive Regulation

Regulation is said to be "naive" if the regulator sets regulation τ and the firm chooses technology (θ, δ) simultaneously.

Regulation is set according to:

$$\tau_n(\theta, \delta) = \operatorname{argmax} W(\theta, \delta, \tau) \quad \text{s.t.} \quad \tau \in [0, 1]$$

Technology is chosen according to:

$$\mathcal{T}_n(au) = rgmin \; rac{1}{ heta(1-\delta au)}$$
 s.t. tech frontier

▶ Nash equilibrium: $\tau_n(\theta_n, \delta_n)$ and $\mathcal{T}_n(\tau_n)$

Regulatory Games: Sticky Regulation

Regulation is said to be "sticky" if the regulator is the first-mover and *internalizes the competitive choice of technology*.

► First, technology is chosen according to:

$$\mathcal{T}_s(au) = rgmin \; rac{1}{ heta(1-\delta au)} \;\;\; ext{ s.t. tech frontier}$$

Second, regulation solves:

$$\max_{\tau \in [0,1]} W(\theta, \delta, \tau) \quad \text{s.t.} \quad \mathcal{T}_s(\tau)$$

• Stackelberg equilibrium: $\tau_s(\theta_s, \delta_s)$ and $\mathcal{T}_s(\tau_s)$

Regulatory Games: Equilibria

Naive & Sticky

Two possibilities:

Regulation implements first-best when

$$\gamma \ge 1 - \frac{\beta}{F}$$

Otherwise, equilibrium features:

- excessive regulation & arbitrage
- sub-optimal productivity
- **intuition:** # distortions > # instruments

Sticky regime underregulates relative to naive (τ_s < τ_n)
 ■ implies θ_s > θ_n
 ■ W_s > W_n

Regulatory Games: Equilibria

Naive & Sticky

Two possibilities:

Regulation implements first-best when

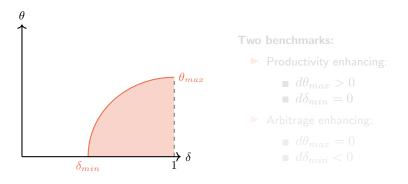
$$\gamma \geq 1 - \frac{\beta}{F}$$

Otherwise, equilibrium features:

- excessive regulation & arbitrage
- sub-optimal productivity
- **intuition:** # distortions > # instruments

Sticky regime underregulates relative to naive $(\tau_s < \tau_n)$

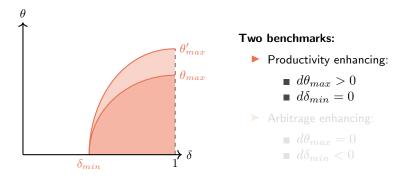
- implies $\theta_s > \theta_n$
- $\bullet W_s > W_n$



Proposition (Welfare effect of technical change)

when regulation can attain the first-best, technical change always (weakly) enhances welfare. Otherwise, technical change has the following effects:

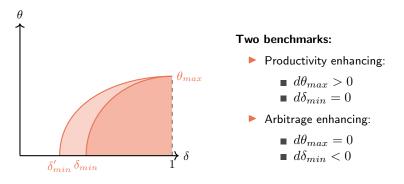
- productivity enhancing tech change always increases welfare
- arbitrage enhancing tech change always reduces welfare



Proposition (Welfare effect of technical change)

When regulation can attain the first-best, technical change always (weakly) enhances welfare. Otherwise, technical change has the following effects:

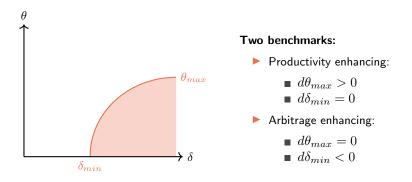
- productivity enhancing tech change always increases welfare
- arbitrage enhancing tech change always reduces welfare



Proposition (Welfare effect of technical change)

When regulation can attain the first-best, technical change always (weakly) enhances welfare. Otherwise, technical change has the following effects:

- **productivity** enhancing tech change always **increases** welfare
- arbitrage enhancing tech change always reduces welfare



Proposition (Welfare effect of technical change)

When regulation can attain the first-best, technical change always (weakly) enhances welfare. Otherwise, technical change has the following effects:

- productivity enhancing tech change always increases welfare
- arbitrage enhancing tech change always reduces welfare

Consider an infinite horizon economy...

Preferences:

$$\sum_{t=0}^{\infty} \rho^t \left(\gamma \log y_t + z_t \right)$$

Private good:

$$y_t = \theta_t \ell_t^y$$

Public good:

$$z_t = \ell_t^z$$

Aggregate resource constraint:

$$\ell_t^y + \ell_t^z \le 1$$

Direction of innovation is endogenous (next slide)

Innovatior

An innovation is a technology bundle $\mathcal{T}_t = (\theta_t, \delta_t)$ satisfying:

Laws of motion:

$$\theta_t = \eta_t \theta_{t-1}$$
$$\delta_t = \min\left\{1, \left(\frac{1+a}{\varphi_t}\right)\delta_{t-1}\right\}$$

where $\eta_t, \varphi_t \ge 1$ are choice variables and $a \in [0, 1]$.

Tech expansion frontier:

$$g \geq \eta_t^\varepsilon + \beta \varphi_t^\varepsilon$$

Regulatory loopholes are closed at exogenous rate (1 + a) > 1

An innovation is a technology bundle $\mathcal{T}_t = (\theta_t, \delta_t)$ satisfying:

Laws of motion:

$$\theta_t = \eta_t \theta_{t-1}$$

$$\delta_t = \min\left\{1, \left(\frac{1+a}{\varphi_t}\right)\delta_{t-1}\right\}$$
Note: (are now variable)

 (θ, δ) state es!

where $\eta_t, \varphi_t \geq 1$ are choice variables and $a \in [0, 1]$.

Tech expansion frontier:

$$g \geq \eta_t^\varepsilon + \beta \varphi_t^\varepsilon$$

Innovatior

An innovation is a technology bundle $\mathcal{T}_t = (\theta_t, \delta_t)$ satisfying:

Laws of motion:

$$\theta_t = \eta_t \theta_{t-1}$$
$$\delta_t = \min\left\{1, \left(\frac{1+a}{\varphi_t}\right)\delta_{t-1}\right\}$$

where $\eta_t, \varphi_t \ge 1$ are choice variables and $a \in [0, 1]$.

Tech expansion frontier:

$$g \geq \eta_t^\varepsilon + \beta \varphi_t^\varepsilon$$

Regulatory loopholes are closed at exogenous rate (1 + a) > 1

First-Best Allocation

The planner solves:

$$\max_{\ell_t^y,\eta_t,\varphi_t} \sum_{t=0}^{\infty} \left(\gamma \sum_{j=0}^t \log(\eta_j \theta_0) + \gamma \log \ell_t^y + 1 - \ell_t^y \right) \quad \text{s.t.} \quad g \geq \eta_t^\varepsilon + \beta \varphi_t^\varepsilon$$

Solution:

Labor allocation:

$$\ell_t^y = \gamma \qquad \quad \ell_t^z = 1 - \gamma$$

Max productivity growth:

$$\eta_{max} = (g - \beta)^{\frac{1}{\varepsilon}}$$

▶ No transition dynamics \Rightarrow BGP for t = 1, 2, ...

Competitive fringe

- Employ vintage technology $T_{t-1} = (\theta_{t-1}, \delta_{t-1})$
- Competitive price:

$$p_t^* = \frac{1}{\theta_{t-1}(1 - \delta_{t-1}\tau_t)}$$

Monopolist

- Chooses direction of innovation
- Limit pricing strategy $p_t = p_t^*$
- Sole producer in equilibrium \Rightarrow earns monopoly rents

Price markup:

$$\mu_t = \left(\frac{\eta_t}{\varphi_t}\right) \left(\frac{\varphi_t - (1+a)\tau\delta_{t-1}}{1 - \tau\delta_{t-1}}\right)$$

- + with productivity growth η_t
- \blacktriangleright + with rate of arbitrage φ_t
- +/- with regulation au

Decentralized Innovation: Equilibrium

The monopolist solves:

$$\max_{\boldsymbol{\eta}_t, \varphi_t} \ \left(\frac{\boldsymbol{\eta}_t}{\varphi_t}\right) \left(\frac{\varphi_t - (1+a)\tau\delta_{t-1}}{1 - \tau\delta_{t-1}}\right) \qquad \text{s.t.} \quad g \geq \boldsymbol{\eta_t}^{\varepsilon} + \beta \varphi_t^{\varepsilon}$$

for given τ and δ_{t-1}

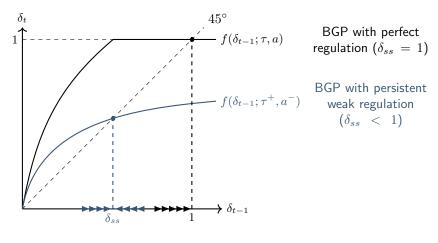
Rate of arbitrage

$$\varphi_t^* = \left[\frac{g(1+a)\tau\delta_{t-1}}{\beta}\right]^{\frac{1}{1+\varepsilon}}$$

Productivity growth

$$\boldsymbol{\eta^*_t} = (g - \beta(\boldsymbol{\varphi^*_t})^{\varepsilon})^{\frac{1}{\varepsilon}}$$

Decentralized Innovation: Arbitrage Dynamics



$$\delta_t = \min\left\{1, \left(\frac{\beta}{\tau g}\right)^{\frac{1}{1+\varepsilon}} \left((1+a)\delta_{t-1}\right)^{\frac{\varepsilon}{1+\varepsilon}}\right\}$$

Decentralized Innovation: Productivity Dynamics

Productivity θ_t converges to stable BGP

• Case 1: perfect regulation ($\delta_{ss} = 1$)

- BGP: max productivity growth $\eta^{BGP} = \eta_{max}$
- No transition dynamics

Case 2: weak regulation (δ_{ss} < 1)
 ■ BGP: low productivity growth η^{BGP} < η_{max}
 ■ η_t → η^{BGP} from below along transition path

Max productivity BGP obtains when:

$$\frac{\tau}{(1+a)^{\varepsilon}} \le \frac{\beta}{g}$$

Optimal Regulation

$$\max_{\{\tau_t \in [0,1]\}_0^\infty} \sum_{t=0}^\infty \rho^t \left[\gamma \log \theta_t + \gamma \log \left(1 - \delta_t \tau_t\right) + \delta_t \tau_t\right]$$

subject to

- Implementability constraints $\eta^*(\tau_t, \delta_{t-1})$, $\varphi^*(\tau_t, \delta_{t-1})$
- Laws of motion (θ_t, δ_t)

Let $x_t = \tau_t \delta_t$. Solution pinned down by:

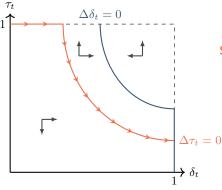
► FOC:

$$\gamma \frac{x_t}{1 - x_t} \left(1 + \varepsilon + \frac{1}{1 - \rho} \right) - \varepsilon x_t = \rho \left[\gamma \frac{x_{t+1}}{1 - x_{t+1}} \left(1 + \varepsilon + \frac{1}{1 - \rho} \right) - \varepsilon x_{t+1} \right]$$

• LoM for δ_t :

$$\delta_t = \min\left\{1, \, \xi x_t^{-\frac{1}{\varepsilon}} \delta_{t-1}\right\}$$

Optimal Regulation



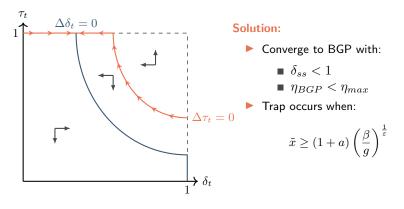
Solution:

- τ_0 jumps to saddle path
- target constant $\tau_t \delta_t = \tilde{x}$
- converge to BGP with η_{max}

Intuition:

- Smooth consumption of public good
- ▶ 2nd-best regulation: underregulate to ensure $\delta_t \rightarrow 1$
- ▶ 1st-best regulation: choose τ_t and innovation \mathcal{T}_t directly

Optimal Regulation: Imperfect Regulation Trap



Intuition:

- Socially desirable level of public good is not feasible
- Implies high regulation & high arbitrage

Conclusion

- Recent technological innovations may not be socially desirable
- Inherent difficulty of regulating new technologies
- Second-best regulation is plausible real world case
- Implies scope for direct steering of technological change