Did Quantitative Easing Increase Income Inequality?

Juan A. Montecino Columbia University Gerald Epstein University of Massachusetts Amherst

March 28, 2018

QE & Inequality

Research Question:

What were the distributional impacts of unconventional monetary policy?

This Paper:

- Econometric decomposition of changes in U.S. income inequality
- Examine contribution of QE channels pre and post-QE
- Simple counterfactual exercise to frame likely causal magnitudes

Results:

- Employment generation is highly egalitarian
- But outweighed by large disequalizing equity return effects
- ► Net effect: QE modestly increased *income* inequality

QE & Inequality

Research Question:

What were the distributional impacts of unconventional monetary policy?

This Paper:

- Econometric decomposition of changes in U.S. income inequality
- Examine contribution of QE channels pre and post-QE
- Simple counterfactual exercise to frame likely causal magnitudes

Results:

- Employment generation is highly egalitarian
- But outweighed by large disequalizing equity return effects
- ▶ Net effect: QE modestly increased *income* inequality

QE & Inequality

Research Question:

What were the distributional impacts of unconventional monetary policy?

This Paper:

- Econometric decomposition of changes in U.S. income inequality
- Examine contribution of QE channels pre and post-QE
- Simple counterfactual exercise to frame likely causal magnitudes

Results:

- Employment generation is highly egalitarian
- But outweighed by large disequalizing equity return effects
- ► Net effect: QE modestly increased *income* inequality

Economic Expansions Since 1960

Income Growth by Quantile – 2010-2016

Preview of Results

Distributional Decomposition

- QE Channels explain most distributional changes for 2010-2016
- \blacktriangleright \approx 2/3 of the increase in the 95/10 ratio
- More than half of the increased Gini coefficient
- Main culprit are higher stock returns via realized k-gains

Counterfactual Analysis

- Causal effect was likely disequalizing
- Increase in the ratio of 95/10th percentiles of \approx 1 percentage point
- Only implausibly large employment effects would yield a reduction in inequality

Preview of Results

Distributional Decomposition

- ▶ QE Channels explain most distributional changes for 2010-2016
- $\blacktriangleright\,\approx\,2/3$ of the increase in the 95/10 ratio
- More than half of the increased Gini coefficient
- Main culprit are higher stock returns via realized k-gains

Counterfactual Analysis

- Causal effect was likely disequalizing
- Increase in the ratio of 95/10th percentiles of \approx 1 percentage point
- Only implausibly large employment effects would yield a reduction in inequality

Theoretical Channels

Channel	Income component	Expected direction
employment	wages	equalizing
inflation	real debt burden, inflation "tax"	ambiguous
asset prices	capital gains	disequalizing
refinancing	interest burden	ambiguous

• Net effect is ambiguous a priori \rightarrow Empirical question!

Existing Empirical Studies

United States

- Bivens (2015) QE was equalizing
- Coibion et al. (2017) Studies conventional m-policy

Europe

- Adam and Tzamourani (2016) wealth inequality in the Eurozone
- Lenza and Slacalek (forthcoming) employment effect dominates

Japan

▶ Inui et al. (2017) - distributionally neutral, time-varying

Distributional Effects: an example

Y (Quantiles)

Suppose, e.g. Y = income & X = stock ownership

Distributional Effects: an example

Effect of X on 90th percentile is:

$$\Delta_{90} = Q_{X=1}^{90} - Q_{X=0}^{90}$$

Distributional Effects: an example

$$\Delta_{90/20} = \Delta_{90} - \Delta_{20}$$

1 Distributional Decomposition

- ▶ Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
- Contribution of returns and endowments on distributional statistics

2 **RIF** Regressions

- Firpo et al. (2007) Regression models going "beyond the mean"
- Estimate direct effect of X on a distributional statistic
- e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition

- Decompose changes in y into "endowment" and "returns" components
- e.g. How much of income growth is due to changes in the composition of workers?

1 Distributional Decomposition

- Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
- Contribution of returns and endowments on distributional statistics

2 RIF Regressions

- Firpo et al. (2007) Regression models going "beyond the mean"
- Estimate direct effect of X on a distributional statistic
- e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition

- Decompose changes in y into "endowment" and "returns" components
- e.g. How much of income growth is due to changes in the composition of workers?

Distributional Decomposition

- Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
- Contribution of returns and endowments on distributional statistics

2 **RIF** Regressions

- ▶ Firpo et al. (2007) Regression models going "beyond the mean"
- Estimate direct effect of X on a distributional statistic
- e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition

- Decompose changes in y into "endowment" and "returns" components
- e.g. How much of income growth is due to changes in the composition of workers?

RIF Regressions

- Simple framework to estimate effect of a covariate on a distributional statistic (e.g. quantiles, gini coefficient, etc.)
- For a statistic ν, replace dependent variable y_i with its "recentered influence function" (RIF)
- The RIF of y_i for a statistic ν has the nice property that:

 $\mathbb{E}\{RIF(y,\nu)\}=\nu$

Assume conditional mean is linear:

 $\mathbb{E}\{RIF(y,\nu)|X_i\} = \beta X + u$

Calculate the RIF and run OLS!

RIF Regressions

- Simple framework to estimate effect of a covariate on a distributional statistic (e.g. quantiles, gini coefficient, etc.)
- For a statistic ν, replace dependent variable y_i with its "recentered influence function" (RIF)
- The RIF of y_i for a statistic ν has the nice property that:

 $\mathbb{E}\{RIF(y,\nu)\} = \nu$

Assume conditional mean is linear:

```
\mathbb{E}\{RIF(y,\nu)|X_i\}=\beta X+u
```

Calculate the *RIF* and run OLS!

RIF Regressions

- Simple framework to estimate effect of a covariate on a distributional statistic (e.g. quantiles, gini coefficient, etc.)
- For a statistic ν, replace dependent variable y_i with its "recentered influence function" (RIF)
- The RIF of y_i for a statistic ν has the nice property that:

 $\mathbb{E}\{RIF(y,\nu)\}=\nu$

Assume conditional mean is linear:

$$\mathbb{E}\{RIF(y,\nu)|X_i\}=\beta X+u$$

Calculate the RIF and run OLS!

Oaxaca-Blinder Decomposition

Consider the linear regression model:

$$y_{it} = \gamma_t X_{it} + u_{it}$$

• The change $\Delta = y_{i1} - y_{i0}$ can be decomposed as:

$$\Delta = \underbrace{\left(\bar{X}_{1} - \bar{X}_{0}\right)\hat{\gamma}_{0}}_{\text{endowments}} + \underbrace{\left(\hat{\gamma}_{1} - \hat{\gamma}_{0}\right)\bar{X}_{0}}_{\text{coefficients}} + \underbrace{\left(\bar{X}_{1} - \bar{X}_{0}\right)\left(\hat{\gamma}_{1} - \hat{\gamma}_{0}\right)}_{\text{interaction}}$$

- Endowments: $\Delta_X = (\bar{X}_1 \bar{X}_0) \hat{\gamma}_0$
- **Coefficients**: $\Delta_{\gamma} = (\hat{\gamma}_1 \hat{\gamma}_0) \bar{X}_0$
- Interaction: $\Delta_{X\gamma} = (\bar{X}_1 \bar{X}_0) (\hat{\gamma}_1 \hat{\gamma}_0)$

Oaxaca-Blinder Decomposition

Consider the linear regression model:

$$y_{it} = \gamma_t X_{it} + u_{it}$$

• The change $\Delta = y_{i1} - y_{i0}$ can be decomposed as:

$$\Delta = \underbrace{\left(\bar{X}_{1} - \bar{X}_{0}\right)\hat{\gamma}_{0}}_{\text{endowments}} + \underbrace{\left(\hat{\gamma}_{1} - \hat{\gamma}_{0}\right)\bar{X}_{0}}_{\text{coefficients}} + \underbrace{\left(\bar{X}_{1} - \bar{X}_{0}\right)\left(\hat{\gamma}_{1} - \hat{\gamma}_{0}\right)}_{\text{interaction}}$$

- Endowments: $\Delta_X = (\bar{X}_1 \bar{X}_0) \, \hat{\gamma}_0$
- Coefficients: $\Delta_{\gamma} = (\hat{\gamma}_1 \hat{\gamma}_0) \, \bar{X}_0$
- Interaction: $\Delta_{X\gamma} = (\bar{X}_1 \bar{X}_0) (\hat{\gamma}_1 \hat{\gamma}_0)$

Data

Survey of Consumer Finances (SCF)

- Triennial household survey sponsored by the Federal Reserve
- Best coverage of financial assets and liabilities for U.S.
- Covers upper tails of the income distribution
- ▶ Will use survey years 2010, 2013, 2016

Some difficulties for inference ...

- Multiple imputations
- Population weights
- Confidential survey design details
- Approach: repeated imputation inference with bootstrapping

Data

Survey of Consumer Finances (SCF)

- Triennial household survey sponsored by the Federal Reserve
- Best coverage of financial assets and liabilities for U.S.
- Covers upper tails of the income distribution
- Will use survey years 2010, 2013, 2016

Some difficulties for inference ...

- Multiple imputations
- Population weights
- Confidential survey design details
- Approach: repeated imputation inference with bootstrapping

Data

Definition of Income

Will use "net income":

Net Income = Total Income – Debt Service

Makes it possible to study impact of refinancing & debt

Total vs. Net Income, 2016 U.S. dollars							
	Total Income			Net Income			
	2010	2013	2016	_	2010	2013	2016
Mean	86,600	89,300	102,300		73,800	78,500	91,100
Median	50,500	48,100	52,700		40,400	40,600	44,600

Functional Forms

$$Wages_{it} = \alpha_t EMP_{it} + \mathbf{X}_{it} \mathbf{\tau} + \epsilon_{it}$$

Financial Income_{it} = $\mathbf{A}_{it}\beta_t + \varepsilon_{it}$
Debt Service_{it} = $\gamma_t RF_{it} + \mu_t B_{it} + \nu_{it}$

- ► *EMP* is an employment dummy and **X** are HH characteristics
- A are financial asset ownership dummies
- RF is a dummy for mortgage refinancing

Combine to obtain Net income:

$$Net_{it} = b_{1t}EMP_{it} + au X_{it} + b_{2t}A_{it} + b_{3t}RF_{it} + b_{5t}B_{it} + e_{it}$$

Mean Endowments: \bar{X}_t

 $\Delta = \left(\bar{X}_1 - \bar{X}_0\right)\hat{\gamma}_0 + \left(\hat{\gamma}_1 - \hat{\gamma}_0\right)\bar{X}_0 + \left(\bar{X}_1 - \bar{X}_0\right)\left(\hat{\gamma}_1 - \hat{\gamma}_0\right)$

RIF Coefficients: $\hat{\gamma}_t$

 $\Delta = \left(\bar{X}_1 - \bar{X}_0\right)\hat{\gamma}_0 + \left(\hat{\gamma}_1 - \hat{\gamma}_0\right)\bar{X}_0 + \left(\bar{X}_1 - \bar{X}_0\right)\left(\hat{\gamma}_1 - \hat{\gamma}_0\right)$

Decomposition Results: Employment

Decomposition Results: Stock Returns

Decomposition Results: Bond Returns

40 50 60 Quantile 70 80 90 100

Decomposition Results: Refinancing

Decomposition Results: Refinancing

Decomposition Results: Inequality Measures

Percentage Point Change in Inequality various measures (2010-2016)

	95/10	90/10	Gini
Total Change	0.071	0.058	0.028
QE Channels	0.045	0.045	0.016
Employment Channel	-0.008	-0.008	-0.001
Financial Returns	0.062	0.048	0.019
Mortgage Refinancing	-0.009	0.005	-0.002

Decomposition Results

Robustness Checks: Reweighting, Additional Covariates

Additional Checks:

- "Over Smoothing"
- Alternative asset categories / definitions
- Data from PSID

Robustness Checks

Stock returns including 99th percentile

House Prices?

Home ownership – coefficients component (Δ_{γ})

Household Debt

- Falling interest rates have helped bottom half
- Deleveraging in the middle of the distribution

Until now...

- Decompositions do not say anything about causality!
- ► Focus on causal estimates of QE on *intermediate channels*
- Empirical literature:
 - Effect on employment: 1 1.5 percentage points
 - Stock prices: 2 8 percent growth
- Use components from decomposition results to carry out counterfactual scenarios

Equity Returns 💽

- What would the contribution of stock returns to inequality look like if we assume QE was responsible for a θ percent growth in stock returns?
- Counterfactual stock contribution is:

$$\Delta_{\mathcal{S}} = \theta \hat{\gamma}_{0,\mathcal{S}} \bar{X}_{0,\mathcal{S}}$$

Employment Effect

- ▶ What would the contribution to inequality of higher employment look like if we assume QE increased employment by ΔX_E ?
- Counterfactual employment contribution is:

$$\Delta_E = \Delta X_E \hat{\gamma}_{1,E}$$

Equity Returns 💽

- What would the contribution of stock returns to inequality look like if we assume QE was responsible for a θ percent growth in stock returns?
- Counterfactual stock contribution is:

$$\Delta_{\mathcal{S}} = \theta \hat{\gamma}_{0,\mathcal{S}} \bar{X}_{0,\mathcal{S}}$$

Employment Effect

- What would the contribution to inequality of higher employment look like if we assume QE increased employment by ΔX_E?
- Counterfactual employment contribution is:

$$\Delta_E = \Delta X_E \hat{\gamma}_{1,E}$$

Counterfactual Scenarios

Contribution to 95/10 Ratio - Various Counterfactuals

Stocks & Employment Loci

Stock Return and Employment Effect Tradeoffs

Counterfactual Analysis

Counterfactual Contributions to the 95/10 Ratio

	Employment effect $(\tilde{\Delta}\bar{X})$			
	1 pp	2 pp	3 pp	4 pp
Equity Return Scenarios (θ)				
0% scenario	-0.3	-0.6	-1.0	-1.3
5% scenario	0.6	0.3	0.0	-0.4
10% scenario	1.5	1.2	0.9	0.6
20% scenario	3.4	3.1	2.8	2.5

Conclusions

Summary of Results

- QE channels associated with large increases in inequality
- Precise causal framing is more nuanced
- Counterfactual analysis suggests modest but positive impact

Outstanding Questions

- Causal magnitudes for other QE channels?
- Impact of QE on wealth inequality?
- Generality of the results?
- QE paradox?

Thank You :)

Capital Gains

(a) Pre-QE

Stable Relationship between realized and unrealized capital gains

(b) Post-QE

Alternative asset indicators

$$\mathbf{A} = \mathbb{1}\{Stocks > p(75)\}$$

Over smoothing

Stock Returns (2007-2017)

Robustness: Evidence from PSID

Decomposition using the PSID (2009-2013)

▶ back