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Overview

QE & Inequality

Research Question:
What were the distributional impacts of unconventional
monetary policy?

This Paper:

I Econometric decomposition of changes in U.S. income inequality

I Examine contribution of QE channels pre and post-QE

I Simple counterfactual exercise to frame likely causal magnitudes

Results:

I Employment generation is highly egalitarian

I But outweighed by large disequalizing equity return effects

I Net effect: QE modestly increased income inequality
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Overview

Economic Expansions Since 1960
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Overview

Income Growth by Quantile – 2010-2016
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Overview

Preview of Results

Distributional Decomposition

I QE Channels explain most distributional changes for 2010-2016

I ≈ 2/3 of the increase in the 95/10 ratio

I More than half of the increased Gini coefficient

I Main culprit are higher stock returns via realized k-gains

Counterfactual Analysis

I Causal effect was likely disequalizing

I Increase in the ratio of 95/10th percentiles of ≈1 percentage point

I Only implausibly large employment effects would yield a reduction in
inequality
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Overview

Theoretical Channels

Channel Income component Expected direction

employment wages equalizing
inflation real debt burden, inflation “tax” ambiguous
asset prices capital gains disequalizing
refinancing interest burden ambiguous

I Net effect is ambiguous a priori → Empirical question!
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Overview

Existing Empirical Studies

United States

I Bivens (2015) – QE was equalizing

I Coibion et al. (2017) – Studies conventional m-policy

Europe

I Adam and Tzamourani (2016) – wealth inequality in the Eurozone

I Lenza and Slacalek (forthcoming) – employment effect dominates

Japan

I Inui et al. (2017) – distributionally neutral, time-varying
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Distributional Decomposition

Distributional Effects: an example

FY(X=1)FY(X=0)
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Suppose, e.g. Y = income & X = stock ownership
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Distributional Decomposition

Distributional Effects: an example

90th percentile
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Effect of X on 90th percentile is:
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X=1 − Q90

X=0
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Distributional Decomposition

Distributional Effects: an example

Δ90

20th percentile
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Effect of X on 90/20 ratio:

∆90/20 = ∆90 −∆20
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Distributional Decomposition

Empirical Methodology

1 Distributional Decomposition
I Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
I Contribution of returns and endowments on distributional statistics

2 RIF Regressions
I Firpo et al. (2007) – Regression models going “beyond the mean”
I Estimate direct effect of X on a distributional statistic
I e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition
I Decompose changes in y into “endowment” and “returns” components
I e.g. How much of income growth is due to changes in the composition

of workers?

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 11 / 42



Distributional Decomposition

Empirical Methodology

1 Distributional Decomposition
I Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
I Contribution of returns and endowments on distributional statistics

2 RIF Regressions
I Firpo et al. (2007) – Regression models going “beyond the mean”
I Estimate direct effect of X on a distributional statistic
I e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition
I Decompose changes in y into “endowment” and “returns” components
I e.g. How much of income growth is due to changes in the composition

of workers?

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 11 / 42



Distributional Decomposition

Empirical Methodology

1 Distributional Decomposition
I Firpo et al. (2008): RIF regression & Oaxaca-Blinder decomposition
I Contribution of returns and endowments on distributional statistics

2 RIF Regressions
I Firpo et al. (2007) – Regression models going “beyond the mean”
I Estimate direct effect of X on a distributional statistic
I e.g. what factors explain median income?

3 Oaxaca-Blinder Decomposition
I Decompose changes in y into “endowment” and “returns” components
I e.g. How much of income growth is due to changes in the composition

of workers?

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 11 / 42



Distributional Decomposition

Empirical Methodology

RIF Regressions

I Simple framework to estimate effect of a covariate on a distributional
statistic (e.g. quantiles, gini coefficient, etc.)

I For a statistic ν, replace dependent variable yi with its “recentered
influence function” (RIF)

I The RIF of yi for a statistic ν has the nice property that:

E{RIF (y , ν)} = ν

I Assume conditional mean is linear:

E{RIF (y , ν)|Xi} = βX + u

I Calculate the RIF and run OLS!
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Distributional Decomposition

Empirical Methodology

Oaxaca-Blinder Decomposition

I Consider the linear regression model:

yit = γtXit + uit

I The change ∆ = yi1 − yi0 can be decomposed as:

∆ =
(
X̄1 − X̄0

)
γ̂0︸ ︷︷ ︸

endowments

+ (γ̂1 − γ̂0) X̄0︸ ︷︷ ︸
coefficients

+
(
X̄1 − X̄0

)
(γ̂1 − γ̂0)︸ ︷︷ ︸

interaction

I Endowments: ∆X =
(
X̄1 − X̄0

)
γ̂0

I Coefficients: ∆γ = (γ̂1 − γ̂0) X̄0

I Interaction: ∆Xγ =
(
X̄1 − X̄0

)
(γ̂1 − γ̂0)
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Distributional Decomposition

Data

Survey of Consumer Finances (SCF)

I Triennial household survey sponsored by the Federal Reserve

I Best coverage of financial assets and liabilities for U.S.

I Covers upper tails of the income distribution

I Will use survey years 2010, 2013, 2016

Some difficulties for inference . . .

I Multiple imputations

I Population weights

I Confidential survey design details

I Approach: repeated imputation inference with bootstrapping
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Distributional Decomposition

Data

Definition of Income

I Will use “net income”:

Net Income = Total Income− Debt Service

I Makes it possible to study impact of refinancing & debt

Total vs. Net Income, 2016 U.S. dollars
Total Income Net Income

2010 2013 2016 2010 2013 2016
Mean 86,600 89,300 102,300 73,800 78,500 91,100
Median 50,500 48,100 52,700 40,400 40,600 44,600
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Distributional Decomposition

Functional Forms

Wagesit = αtEMPit + Xitτ + εit

Financial Incomeit = Aitβt + εit

Debt Serviceit = γtRFit + µtBit + νit

I EMP is an employment dummy and X are HH characteristics

I A are financial asset ownership dummies

I RF is a dummy for mortgage refinancing

Combine to obtain Net income:

Netit = b1tEMPit + τXit + b2tAit + b3tRFit + b5tBit + eit
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Decomposition Results

Mean Endowments: X̄t

(a) Employment
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(c) Mortgage Refinancing
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Decomposition Results

RIF Coefficients: γ̂t

(a) Employment

0
.5

1
1.

5
Δ
 P

er
ce

nt
ag

e 
Po

in
t C

on
tr

ib
ut

io
n

0 10 20 30 40 50 60 70 80 90 100
Quantile

(b) Equities
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(c) Mortgage Refinancing
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Decomposition Results

Decomposition Results: Employment

Employment – Endowments Component (∆X )
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Decomposition Results

Decomposition Results: Stock Returns

Stock Returns – Coefficients Component (∆γ)
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Decomposition Results

Decomposition Results: Bond Returns

Bonds – Coefficients Component (∆γ)
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Decomposition Results

Decomposition Results: Refinancing

Mortgage Refinancing – 2010-2013
-.0

2
0

.0
2

.0
4

Δ
 P

er
ce

nt
ag

e 
Po

in
t C

on
tr

ib
ut

io
n

0 10 20 30 40 50 60 70 80 90 100
Quantile

Coefficients

-.0
2

0
.0

2
.0

4
Δ
 P

er
ce

nt
ag

e 
Po

in
t C

on
tr

ib
ut

io
n

0 10 20 30 40 50 60 70 80 90 100
Quantile

Endowments

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 22 / 42



Decomposition Results

Decomposition Results: Refinancing

Mortgage Refinancing – 2010-2016
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Decomposition Results

Decomposition Results: Inequality Measures

Percentage Point Change in Inequality
various measures (2010-2016)

95/10 90/10 Gini

Total Change 0.071 0.058 0.028
QE Channels 0.045 0.045 0.016

Employment Channel -0.008 -0.008 -0.001
Financial Returns 0.062 0.048 0.019
Mortgage Refinancing -0.009 0.005 -0.002
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Decomposition Results

Robustness Checks: Reweighting, Additional Covariates

(a) Employment (∆X )
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(b) Equities (∆γ)
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Additional Checks:

I “Over Smoothing”

I Alternative asset categories / definitions

I Data from PSID
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Decomposition Results

Robustness Checks

Stock returns including 99th percentile
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Decomposition Results

House Prices?

Home ownership – coefficients component (∆γ)
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Decomposition Results

Household Debt

(a) Coefficients component – (∆X )
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(b) Endowments component – (∆γ)
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I Falling interest rates have helped bottom half

I Deleveraging in the middle of the distribution
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Counterfactual Analysis

Until now. . .

Inequality

Employment

Asset Price

QE

γ̂emp

γ̂stock
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Counterfactual Analysis

QE Counterfactuals

Inequality

Employment

Asset Price

QE

γ̂emp

γ̂stock

?

?
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Counterfactual Analysis

QE Counterfactuals

I Decompositions do not say anything about causality!

I Focus on causal estimates of QE on intermediate channels
I Empirical literature:

I Effect on employment: 1 - 1.5 percentage points
I Stock prices: 2 - 8 percent growth

I Use components from decomposition results to carry out
counterfactual scenarios
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Counterfactual Analysis

QE Counterfactuals

Equity Returns

I What would the contribution of stock returns to inequality look like if
we assume QE was responsible for a θ percent growth in stock
returns?

I Counterfactual stock contribution is:

∆S = θγ̂0,S X̄0,S

Employment Effect

I What would the contribution to inequality of higher employment look
like if we assume QE increased employment by ∆XE?

I Counterfactual employment contribution is:

∆E = ∆XE γ̂1,E
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Counterfactual Analysis

Counterfactual Scenarios

Contribution to 95/10 Ratio – Various Counterfactuals
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Counterfactual Analysis

Stocks & Employment Loci

Stock Return and Employment Effect Tradeoffs

.02

.134

-.091

-.1
0

.1
.2

St
oc

k 
re

tu
rn

 e
ffe

ct
 (θ

)

0 .01 .02 .03 .04 .05
Employment effect (ΔX)

zero locus 2% locus
-2% locus

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 34 / 42



Counterfactual Analysis

Counterfactual Analysis

Counterfactual Contributions to the 95/10 Ratio
Table 3.3: Counterfactual contributions to the 95/10 ratio under various scenarios

Employment e↵ect (�̃X̄)
1 pp 2 pp 3 pp 4 pp

Equity Return Scenarios (✓)
0% scenario -0.3 -0.6 -1.0 -1.3
5% scenario 0.6 0.3 0.0 -0.4
10% scenario 1.5 1.2 0.9 0.6
20% scenario 3.4 3.1 2.8 2.5

Note: This table reports the combined contribution of returns to equities and changes in the
employment rate to the 95/10 ratio under various counterfactual scenarios. The contributions
are presented as percentage changes. Each counterfactual contribution is calculated according to
equation (3.11) in the text. A one pp employment e↵ect refers to a one percentage point causal
change in the employment rate.

QE to inequality through employment and stock returns is positive for a substantial

range of e↵ects on employment. For example, let’s consider the net contribution to

inequality assuming that the causal e↵ect of QE on employment was 1.2 percentage

points. This change in employment is consistent with the baseline estimates reported

by Engen et al. [37]. As can be seen in panel (a), this corresponds to a 0.5 percentage

point increase to the 95/10 ratio under the 5 percent stock returns scenario, a 1.5

percentage point contribution under the 10 percent scenario, and as high as 3.4

percentage points under the 20 percent scenario.

Indeed, under the 5 percent stock returns scenario, the contribution to the 95/10

ratio only becomes negative for assumed employment e↵ects exceeding 3 percentage

points, which is more than double the baseline e↵ect reported by Engen et al. [37].

Making the less conservative assumption that 10 percent of the change in stock re-

turns was due to QE, the employment e↵ects necessary to yield a neutral or negative

115
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Counterfactual Analysis

Conclusions

Summary of Results

I QE channels associated with large increases in inequality

I Precise causal framing is more nuanced

I Counterfactual analysis suggests modest but positive impact

Outstanding Questions

I Causal magnitudes for other QE channels?

I Impact of QE on wealth inequality?

I Generality of the results?

I QE paradox?

Montecino, J.A. & Epstein, G. QE Inequality March 28, 2018 36 / 42



Counterfactual Analysis

Thank You :)
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Capital Gains

Stable Relationship between realized and unrealized capital gains

(a) Pre-QE
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(b) Post-QE
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Alternative asset indicators

Stock returns – coefficients component (∆γ)
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A = 1{Stocks > p(75)}
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Over smoothing

(a) Employment (∆X )
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(b) Equities (∆γ)
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Stock Returns (2007-2017)
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Robustness: Evidence from PSID

Decomposition using the PSID (2009-2013)
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